
Physics 604 

Problem Set 1 

Due Sept 16, 2010 

 

 

1) a)    Inside a good conductor the electric field is zero (electrons in the conductor, because they are 

 free to move, move in a way to cancel any electric field impressed  on the conductor, inside the 

 volume of the conductor). Apply Gauss’s law to any volume wholly inside the conductor. 
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 There can be no [net] charge inside the conductor. Electric field can come up to the surface of a 

 conductor, where it must be terminated by a surface charge on the surface. 

 

b) Suppose we have a closed conducting shell and a charge outside the shell. We would like to 

 compute the electric field inside the shell because of the presence of the charge. Choose a 

 closed surface completely inside the shell enclosing the interior of the shell. Because 0E  on 

 the surface since it is inside the conductor, there is no net charge inside the surface, 

 independent of where the exterior charge is placed, and no electric field induced inside of the 

 surface by the exterior charge because the charge inside must remain zero. In other words, the 

 interior of a conducting shell is shielded from external electrical disturbances. On the other 

 hand, an unbalanced charge interior to the shell will generate a field outside the shell because 
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 for any surface that totally encloses the shell. 

      c) A Gaussian pillbox argument shows 0/normalE   . If the pillbox extends inside the 

 conductor to outside, and one considers a small area element A  
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 This specifies the normal component. Suppose one has a small Gaussian loop above the surface 

 with displacement parallel to the surface. Then 
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 because the backward part of the loop integral, inside the conductor, must vanish. Because the 

 loop can be oriented in any direction parallel to the surface, the tangential field (in all tangent 

 directions) must vanish.  

 

2)  This problem is a straightforward application of Poisson’s Equation. Note that for small r, the 

 potential goes to 
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 The discussion in class shows 
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 representing the density of the singly-charged nucleus. There are no other singularities in the 

 potential to worry about. Using the expression for the Laplacian in spherical coordinates on the 

 back cover of the text,
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 is the average electron charge distribution in the atom. Note that it integrates to the proper 

 value: 
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 Because of the finite size of the nucleus, in fact the charge density of the proton is spread out, 

 and the potential isn’t  1/ r  at distances short compared to the proton size. This kind of thing is 

 studied with great precision at Jefferson Lab. 

 



3) a) Neglect the edge effects and assume that the charge is uniformly distributed on the plates, the 

 upper plate with positive charge, the lower plate with negative charge.  Assume the z-direction 

 is aligned along d. By the usual Gaussian pillbox argument, the field inside is 
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 The potential difference is 
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 The capacitance is 
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     b) Here assume that the negative charge is on the inside sphere, and uniformly distributed by 

 symmetry. Gauss’s Law gives 
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 The potential difference is 
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The capacitance is 
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   c) Assume that the negative charge is on the inside cylinder and uniformly distributed along the 

 length of the cylinder. Gauss’s Law gives 
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 The potential difference is 
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The capacitance is 

 02 / ln / .C L b a  

    d) One 

 

4) a) Neglect the edge effects and the corrections due to the fact the charge is slightly displaced from 

 uniform distribution on the conductor (corrections of order a/d and b/d), and assume that the 

 fields are simply two line charge fields superposed. 
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 where 
,a br are the positions of the center of the line charges. To the first significant order in a/d 

 and b/d, 
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5)  This problem is a straightforward application of Green’s Second Identity. Following the same 

 procedure as going from Eqn. 1.35 to Eqn. 1.36 yields (note that the   term is zero in Eqn. 1.36 

 because the scalar potential solves the Laplace Equation) 

 

 

 

2

2

2

2

1 1 1

4

1 1
        

4 4

1 1
        

4 4

1
        ,

4

S

S S

V S

S

x da
R n n R

n da da
a R

dx dy dz da
a a

x da
a



 

 



    
          


     

       

  



 

 



 

 where a is the radius of the sphere and R x x  . The final integral is clearly the average 

 of the potential over the surface of the sphere. It does not matter what radius is chosen for the 

 sphere in performing the average, but of course the values of the scalar potential on the surface 

 will depend on the choice of radius. 

6)  The (upper bound) capacitance determined by the trial function is 
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 where a is the inner radius of the cylinder, where b is the outer radius of the cylinder, and L is 

 the length of the cylinder. Evaluating the exact and estimated capacitance numerically yields 

 this table:
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Trial Function
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1.5 2.46630 2.5 

2 1.44270 1.5 

3 0.91024 1.0 

 
The “Exact” field is more like the linear trial function when b a . In the limit, clearly the two 

 expressions agree by the expansion  ln 1 x x   for small x . Notice the trial values are 

 indeed higher than the exact values. 

 


